Author:
Daoues Adel,Hammami Amani,Saoudi Kamel
Abstract
In this article we study a nonlocal equation involving singular and critical Hardy-Sobolev non-linearities, \[\displaylines{(-\Delta_p)^su-\mu \frac{|u|^{p-2}u}{|x|^{sp}}=\lambda u^{-\alpha}+\frac{|u|^{p_s^*(t)-2}u}{|x|^t}, \quad\hbox{in }\Omega, \\ u>0,\quad\text{in }\Omega,\\ \quad u=0, \quad\text{in } \mathbb{R}^N \setminus\Omega }\] where \(\Omega \subset \mathbb{R}^N\) is a bounded domain with Lipschitz boundary and\( (-\Delta_p)^s\) is the fractional p-Laplacian operator.We combine some variational techniques with a perturbation method to show the existenceof multiple solutions.
Reference25 articles.
1. B. Barriosa, E. Coloradoc, R. Servadeid, F. Soria; A critical fractional equation with concave- convex power nonlinearities, Ann. I. H. Poincaré, 32 (2015), 875-900. https://doi.org/10.1016/j.anihpc.2014.04.003
2. J. Bertoin; Lévy Processes; Cambridge Tracts in Mathematics, 121, Cambridge University Press, 1998.
3. T. Bojdecki, L. G. Gorostiza; Fractional brownian motion via fractional Laplacian, Statistics & Probability Letters, 44 (1) (1999), 107-108. https://doi.org/10.1016/S0167-7152(99)00014-0
4. W. Chen, S. Mosconi, M. Squassina; Nonlocal problems with critical Hardy non-linearity, Journal of functional analysis, 275 (11) (2018), 3065-3114. https://doi.org/10.1016/j.jfa.2018.02.020
5. Y. Fang; Existence uniqueness of positive solution to a fractional Laplacians with singular nonlinearity, arXiv preprint arXiv:1403.3149, 2014.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献