Radial bounded solutions for modified Schrodinger equations

Author:

Mennuni Federica,Salvatore AddolorataORCID

Abstract

We study the quasilinear elliptic equation  $$ -\operatorname{div} (a(x,u,\nabla u)) +A_t(x,u,\nabla u) + |u|^{p-2}u =g(x,u) \quad \hbox{in }R^N, $$ with \(N\ge 2\) and \(p > 1\).  Here, \(A : R^N \times  R\times R^N \to R\) is a given  \(C^1\)-Caratheodory function that grows as \(|\xi|^p\) with  \(A_t(x,t,\xi) = \frac{\partial A}{\partial t}(x,t,\xi)\),  \(a(x,t,\xi) = \nabla_\xi A(x,t,\xi)\) and \(g(x,t)\) is a given  Caratheodory function on \(R^N \times R\) which  grows as \(|\xi|^q\) with \(1<q<p\).  Suitable assumptions on \(A(x,t,\xi)\) and \(g(x,t)\)  set off the variational structure of above problem and its  related functional \(J\) is \(C^1\) on the Banach space \(X = W^{1,p}(R^N) \cap L^\infty(R^N)\). To overcome the lack of compactness, we assume that the problem has radial symmetry, then we look for  critical points of \(J\) restricted to \(X_r\), subspace of the radial  functions in \(X\).Following an approach that exploits the interaction between the intersection norm in \(X\) and the norm in \(W^{1,p}(R^N)\),  we prove the existence of at least two weak bounded radial solutions,   one positive and one negative. For this, we apply a generalized version of the Minimum Principle.   For more information see https://ejde.math.txstate.edu/Volumes/2024/42/abstr.html

Publisher

Texas State University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3