Análisis de electroencefalograma usando redes neuronales artificiales

Author:

Delgado Karina,Ledesma Sergio,Rostro Horacio

Abstract

A través de la electroencefalografía se detecta la comunicación entre señales eléctricas creadas por las neuronas que, al conectarse entre sí, crean conexiones sinápticas. Esta técnica ha sido muy importante en la detección de trastornos neurológicos como la epilepsia. Caracterizada por cambios temporales en el funcionamiento bioeléctrico del cerebro, la epilepsia provoca convulsiones que afectan a la conciencia, el movimiento o la sensibilidad. Las redes neuronales artificiales (RNA) proporcionan modelos con diversas alternativas para detección, clasificación y predicción de muestras mediante el análisis del electroencefalograma a partir de la estructura de los datos, los cuales determinan la topología de la red. Este artículo propone la implementación de un modelo basado en RNA para analizar, clasificar y procesar señales epilépticas a partir del entrenamiento. Particularmente, la base de datos cuenta con muestras que registraron la actividad cerebral de pacientes sanos, pacientes que controlaron las crisis y pacientes que aún registraban oscilaciones en las señales emitidas por la actividad cerebral. Después de aplicar la transformada de Fourier, estas señales se integraron en una matriz aplicando tres tipos de umbral, procediendo a seleccionar los datos de entrada de la RNA para su entrenamiento y validación. Se consideran dos métodos de aprendizaje: redes neuronales multicapa con validación clásica (back propagation) y redes neuronales con validación cruzada (LOOCV, por sus siglas en inglés), para ello se calcula el error cuadrático medio (MSE, por sus siglas en inglés) así como la cantidad de errores por umbral con la finalidad de comparar los resultados obtenidos y precisar el método que proporciona los mejores resultados. Ambas redes se entrenaron usando un método híbrido basado en el templado simulado y el gradiente conjugado. Finalmente, se presenta el análisis de las RNA como sistemas de clasificación a través de los dos métodos en funcionamiento, alcanzando resultados satisfactorios que manifiestan la aplicación como herramienta de apoyo al diagnóstico médico para la detección de este trastorno.

Publisher

University of Guanajuato

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3