New Evidence of Late Quaternary Tectonic Activity Along the Eastern Margin of the Qaidam Basin

Author:

Bao Guodong12ORCID,Ren Zhikun12ORCID,Ha Guanghao12,Liu Jinrui12ORCID,Zhang Zhiliang12,Zhu Xiaoxiao12,Wu Dengyun12,Ji Haomin12

Affiliation:

1. State Key Laboratory of Earthquake Dynamics Institute of Geology China Earthquake Administration Beijing China

2. Key Laboratory of Seismic and Volcanic Hazards Institute of Geology, China Earthquake Administration Beijing China

Abstract

AbstractThe tectonic deformation on the eastern margin of the Qaidam Basin, which has preserved complete sedimentary records, significantly influences the evolutionary model of the northeastern margin of the Tibetan Plateau. However, the deformation history in this area during the Holocene remains unclear. This study is based on the high‐precision digital elevation model obtained through drone mapping technology, which identifies three active faults on the eastern margin of the Qaidam Basin: the Xiariha Fault (XRHF) and Yingdeerkang Fault Yingdeerkang Fault (YKF) are NW‒SE‐orientated dextral faults, whereas the Reshui‐Taosituohe Fault (RTF) is a nearly east‒west‐orientated sinistral fault. Based on the optically stimulated luminescence dating of the landform surfaces, the rates of strike‐slip offset are as follows: those of the XRHF range from 1.12 ± 0.07 to 1.68 ± 0.12 mm/yr and those of the YKF are from 0.99 ± 0.06 to 2.29 ± 0.13 mm/yr. Recent paleoseismic events occurred along the RTF at approximately 714–1,792 years BP and at 700 ± 18 years BP, implying a recurring millennial pattern. Together, these faults possibly form a complex cross‐fault system along the southeastern edge of the basin, heightening seismic risk. Deformation in the western part of the northeastern Tibetan Plateau is driven by slip on the Altyn Tagh Fault and compression in the Qaidam Basin. The central part experiences slip on the East Kunlun Fault, along with secondary faults, shortening, and block rotation. The eastern part primarily experiences slip along the Haiyuan Fault.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3