Three‐Dimensional Electrostatic Hybrid Particle‐In‐Cell Simulations of the Plasma Mini‐Wake Near a Lunar Polar Crater

Author:

Xie Lianghai1ORCID,Li Lei1ORCID,Wang Jindong12,Zhang Yiteng1ORCID,Zhou Bin1,Feng Yongyong1,Xu Qi1,Gou Xiaochen1ORCID,Wang Chi1

Affiliation:

1. State Key Laboratory of Space Weather National Space Science Center Chinese Academy of Sciences Beijing China

2. Joint Research and Development Center of Chinese Science Academy and Shen County Weihai China

Abstract

AbstractLunar polar region has become the focus of future explorations due to the possible ice reservoir in the permanently shadowed craters. However, the space environment near the polar crater is quite complicated, and a plasma mini‐wake can be caused by the topographic obstruction. So far, three‐dimensional (3D) numerical simulations of the mini‐wake around a crater far larger than the Debye length are still limited. Here we present a 3D electrostatic hybrid particle‐in‐cell model to study the plasma mini‐wake of a polar crater on scale of about 1 km. It is found that the mini‐wake can begin upstream from the crater with a cone angle of about 8.8°. There is a plasma void with extra electrons near the leeward crater wall, where the electric potential can be as low as −60 V. A part of solar wind ions can be diverted into the crater, and the ratio of the diverted flux is about 4% on the crater bottom and about 18% on the windward crater wall, which provide an important source for the surface sputtering. Further studies show that the mini‐wake can change with the solar wind parameters and the crater shapes. Our results are helpful to assess the space environment and the water loss rate of a polar crater, and have general implications in studying the plasma mini‐wake caused by a crater on the other airless bodies.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3