Solute Trapping and the Mechanisms of Non‐Fickian Transport in Partially Saturated Porous Media

Author:

Ben‐Noah Ilan1ORCID,Hidalgo Juan J.1ORCID,Jimenez‐Martinez Joaquin23ORCID,Dentz Marco1ORCID

Affiliation:

1. Institute of Environmental Assessment and Water Research (IDAEA) Spanish National Research Council (CSIC) Barcelona Spain

2. Department Water Resources and Drinking Water Swiss Federal Institute of Aquatic Science and Technology, Eawag Dübendorf Switzerland

3. Department of Civil, Environmental and Geomatic Engineering Institute of Environmental Engineering, ETH Zurich Zürich Switzerland

Abstract

AbstractWe study the upscaling of pore‐scale solute transport in partially saturated porous media at different saturation degrees. The interaction between structural heterogeneity, phases distribution and small‐scale flow dynamics induces complex flow patterns and broad probability distributions of flow, which control key aspects of transport, such as residence and arrival times, dispersion, and spatial solute distributions, as well as chemical reactions. A continuous‐time random walk (CTRW) framework that integrates the processes of advection, diffusion, and trapping in immobile zones is used to upscale and evaluate the transport of diluted solutes. Results of this model were compared to direct numerical simulations solving the advection‐diffusion equation in experimental saturation patterns. The comparison between simulations results, with different Péclet numbers (Pe), and the physics‐based upscaled CTRW approach allows for a quantitative analysis of the governing factors of transport in partially saturated porous media. This analysis shows that the fluid phase saturation decreases the advective tortuosity, the media's characteristic length, the fraction of the immobile region, and the mean trapping time. At the same time, for a given saturation degree, the normalized mean trapping time is proportional to the Pe. This suggests that the characteristic trapping length is proportional to the media's characteristic (correlation) length. Moreover, the trapping frequency decreases with increasing Pe.

Funder

European Commission

Agencia Estatal de Investigación

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3