Climatic Changes in North Atlantic O2 Amplified by Temperature Sensitivity of Phytoplankton Growth

Author:

Margolskee A.12ORCID,Ito T.3ORCID,Long M.4ORCID,Deutsch C.125ORCID

Affiliation:

1. School of Oceanography University of Washington Seattle WA USA

2. Department of Geosciences Princeton University Princeton NJ USA

3. School of Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta GA USA

4. National Center for Atmospheric Research Boulder CO USA

5. High Meadows Environmental Institute Princeton University Princeton NJ USA

Abstract

AbstractOcean warming is associated with a decline in the global oxygen (O2) inventory, but the ratio of O2 loss to heat gain is poorly understood. We analyzed historical variability in temperature (T), O2, and nitrate in hydrographic observations and model simulations of the North Atlantic, a relatively well‐sampled region that is important for deep ocean ventilation. Multidecadal fluctuations of O2 concentrations in subpolar thermocline waters (100–700 m) are correlated with changes in their heat content, with a slope 35% steeper than that expected from thermal solubility. Variations of O2 in excess of the solubility effect are correlated with observed decadal changes in in the surface layer (0–50 m), which declines by ∼1 mmol N m−3 per degree of temperature anomaly. Enhanced biologically mediated drawdown of nutrients from the photic zone and associated respiration in deeper water account for the additional depletion of thermocline O2 during warm years. In model simulations, increased nutrient consumption in warm periods is driven by an early start of the phytoplankton growing season and faster phytoplankton growth rates at higher temperatures. Our results highlight a role for phytoplankton T‐dependent growth rates in amplifying ocean O2 loss.

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science,General Environmental Science,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3