Affiliation:
1. Scripps Institution of Oceanography University of California San Diego La Jolla CA USA
2. Max Planck Institute for Meteorology Hamburg Germany
3. International Max Planck Research School on Earth System Modelling Hamburg Germany
4. Flanders Marine Institute (VLIZ) Ostend Belgium
5. NORCE Norwegian Research Centre Bjerknes Centre for Climate Research Bergen Norway
6. Environmental Physics Institute of Biogeochemistry and Pollutant Dynamics ETH Zurich Zurich Switzerland
Abstract
AbstractSeveral methods have been developed to quantify the oceanic accumulation of anthropogenic carbon dioxide (CO2) in response to rising atmospheric CO2. Yet, we still lack a corresponding estimate of the changes in the total oceanic dissolved inorganic carbon (DIC). In addition to the increase in anthropogenic CO2, changes in DIC also include alterations of natural CO2. Once integrated globally, changes in DIC reflect the net oceanic sink for atmospheric CO2, complementary to estimates of the air‐sea CO2 exchange based on surface measurements. Here, we extend the MOBO‐DIC machine learning approach by Keppler et al. (2020a, https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc%3A0221526) to estimate global monthly fields of DIC at 1° resolution over the top 1,500 m from 2004 through 2019. We find that over these 16 years and extrapolated to cover the whole global ocean down to 4,000 m, the oceanic DIC pool increased close to linearly at an average rate of 3.2 ± 0.7 Pg C yr−1. This trend is statistically indistinguishable from current estimates of the oceanic uptake of anthropogenic CO2 over the same period. Thus, our study implies no detectable net loss or gain of natural CO2 by the ocean, albeit the large uncertainties could be masking it. Our reconstructions suggest substantial internal redistributions of natural oceanic CO2, with a shift from the midlatitudes to the tropics and from the surface to below ∼200 m. Such redistributions correspond with the Pacific Decadal Oscillation and the Atlantic Multidecadal Oscillation. The interannual variability of DIC is strongest in the tropical Western Pacific, consistent with the El Nio Southern Oscillation.
Publisher
American Geophysical Union (AGU)
Subject
Atmospheric Science,General Environmental Science,Environmental Chemistry,Global and Planetary Change
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献