The Benefits of Future Quantum Accelerometers for Satellite Gravimetry

Author:

Zingerle P.1ORCID,Romeshkani M.2ORCID,Haas J.3ORCID,Gruber T.1ORCID,Güntner A.34,Müller J.2ORCID,Pail R.1

Affiliation:

1. Institute of Astronomical and Physical Geodesy Technical University of Munich Munich Germany

2. Institut für Erdmessung Leibniz Universität Hannover Hannover Germany

3. Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences Section Hydrology Potsdam Germany

4. Institute of Environmental Science and Geography University of Potsdam Potsdam Germany

Abstract

AbstractWe investigate the benefits of future quantum accelerometers based on cold atom interferometry (CAI) on current and upcoming satellite gravity mission concepts. These mission concepts include satellite‐to‐satellite tracking (SST) in a single‐pair (GRACE‐like) and double‐pair constellation as well as satellite gravity gradiometry (SGG, single satellite, GOCE‐like). Regarding instruments, four scenarios are considered: current‐generation electrostatic (GRACE‐, GOCE‐like), next‐generation electrostatic, conservative hybrid/CAI and optimistic hybrid/CAI. For SST, it is shown that temporal aliasing poses currently the dominating error source in simulated global gravity field solutions independent of the investigated instrument and constellation. To still quantify the advantages of CAI instruments on the gravity functional itself, additional simulations are performed where the impact of temporal aliasing is synthetically reduced. When neglecting temporal aliasing, future accelerometers in conjunction with future ranging instruments can substantially improve the retrieval performance of the Earth's gravity field (depending on instrument and constellation). These simulation results are further investigated regarding possible benefit for hydrological use cases where these improvements can also be observed (when omitting temporal aliasing). For SGG, it is demonstrated that, with realistic instrument assumptions, one is still mostly insensitive to time‐variable gravity and not competitive with the SST principle. However, due to the improved instrument sensitivity of quantum gradiometers compared to the GOCE mission, static gravity field solutions can be improved significantly.

Funder

Bundesministerium für Wirtschaft und Energie

Deutsche Forschungsgemeinschaft

Deutsches Zentrum für Luft- und Raumfahrt

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3