TPTNet: A Data‐Driven Temperature Prediction Model Based on Turbulent Potential Temperature

Author:

Park Jun1ORCID,Lee Changhoon12ORCID

Affiliation:

1. School of Mathematics and Computing Yonsei University Seoul Korea

2. School of Mechanical Engineering Yonsei University Seoul Korea

Abstract

AbstractA data‐driven model for predicting the surface temperature using neural networks was proposed to alleviate the computational burden of numerical weather prediction (NWP). Our model, named TPTNet uses only 2 m temperature measured at the weather stations of the South Korean Peninsula as input to predict the local temperature at finite forecast hours. The turbulent fluctuation component of the temperature was extracted from the station measurements by separating the climatology component accounting for the yearly and daily variations. The effect of station altitude was then compensated by introducing a potential temperature. The resulting turbulent potential temperature (TPT) data at irregularly distributed stations were used as input for predicting the TPT at forecast hours through three trained networks based on convolutional neural network, Swin Transformer, and a graph neural network. By comparing the prediction performance of our network with that of persistence and NWP, we found that our model can make predictions comparable to NWP for up to 12 hr.

Funder

National Research Foundation of Korea

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3