Observed APO Seasonal Cycle in the Pacific: Estimation of Autumn O2 Oceanic Emissions

Author:

Tohjima Y.1ORCID,Shirai T.1,Ishizawa M.2ORCID,Mukai H.1,Machida T.1ORCID,Sasakawa M.1ORCID,Terao Y.1,Tsuboi K.3,Takao S.1ORCID,Nakaoka S.1ORCID

Affiliation:

1. National Institute for Environmental Studies Ibaraki Japan

2. Environment and Climate Change Canada Toronto ON Canada

3. Meteorological Research Institute Ibaraki Japan

Abstract

AbstractIn this work, we investigated the seasonal cycle of atmospheric potential oxygen (APO), a unique tracer of air‐sea gas exchanges of molecular oxygen (O2) and carbon dioxide (CO2), expressed as APO = O2 + 1.1 × CO2. APO data were obtained from flask air samples collected since the late 1990s at three Japanese ground stations and on commercial cargo ships sailing between Japan and Australia/New Zealand, North America, and Southeast Asia. We also analyzed the APO spatial distribution and seasonal cycles with simulations from an atmospheric transport model using climatological oceanic O2 fluxes from an empirical product that relate O2 flux to ocean heat as input. Model simulations reproduced the observed APO seasonal cycles generally well, but with larger amplitudes and earlier occurrence of seasonal minima and maxima than in the observations. Moreover, the observed seasonal cycles exhibited larger APO enhancements than the simulations in autumn and early winter, especially in the North Pacific at 20°N–60°N. These enhancements remained when refining the comparison by adjusting the simulated APO peak‐to‐peak amplitudes and seasonal phases to the observations. This suggests additional O2 emissions in the North Pacific, not well expressed in the air‐sea O2 fluxes used as input for our model simulations. The average autumn enhancement at 40°N–60°N was approximately twice that measured at 20°N–40°N. Confirming previous studies, our results indicate two distinct mechanisms possibly contributing to the additional oceanic O2 emissions: outgassing from a subsurface shallow oxygen maximum at 20°N–40°N and autumn phytoplankton bloom at 40°N–60°N.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3