Local Volume Solvers for Earth System Data Assimilation: Implementation in the Framework for Joint Effort for Data Assimilation Integration

Author:

Frolov Sergey1ORCID,Shlyaeva Anna2,Huang Wei3,Sluka Travis2,Draper Clara1ORCID,Huang Bo4ORCID,Martin Cory5ORCID,Elless Travis6,Bhargava Kriti2,Whitaker Jeff1ORCID

Affiliation:

1. NOAA Physical Sciences Laboratory Boulder CO USA

2. Joint Center for Satellite Data Assimilation Boulder CO USA

3. NOAA Physical Sciences Laboratory Cooperative Institute for Research in Environmental Sciences at the University of Colorado Boulder Boulder CO USA

4. NOAA Global Systems Laboratory Cooperative Institute for Research in Environmental Sciences at the University of Colorado Boulder Boulder CO USA

5. NOAA Environmental Modeling Center College Park MD USA

6. SAIC NOAA Environmental Modeling Center College Park MD USA

Abstract

AbstractThe Joint Effort for Data assimilation Integration (JEDI) is an international collaboration aimed at developing an open software ecosystem for model agnostic data assimilation. This paper considers implementation of the model‐agnostic family of the local volume solvers in the JEDI framework. The implemented solvers include the Local Ensemble Transform Kalman Filter (LETKF), the Gain form of the Ensemble Transform Kalman Filter (GETKF), and the optimal interpolation variant of the LETKF (LETKF‐OI). This paper documents the implementation strategy for the family of the local volume solvers within the JEDI framework. We also document an expansive set of localization approaches that includes generic distance‐based localization, localization based on modulated ensemble products, and localizations specific to ocean (based on the Rossby radius of deformation), and land (based on the terrain difference between observation and model grid point). Finally, we apply the developed solvers in a limited set of experiments, including single‐observation experiments in atmosphere and ocean, and cycling experiments for the atmosphere, ocean, land, and aerosol assimilation. We also illustrate how JEDI Ensemble Kalman Filter solvers can be used in a strongly coupled framework using the interface solver approximation, which provides increments to the ocean based on observations from the ocean and atmosphere.

Funder

NOAA Research

Climate Program Office

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3