Inferring Ocean Transport Statistics With Probabilistic Neural Networks

Author:

Brolly Martin T.1ORCID

Affiliation:

1. School of Mathematics and Maxwell Institute for Mathematical Sciences University of Edinburgh Edinburgh UK

Abstract

AbstractUsing a probabilistic neural network and Lagrangian observations from the Global Drifter Program, we model the single particle transition probability density function (pdf) of ocean surface drifters. The transition pdf is represented by a Gaussian mixture whose parameters (weights, means, and covariances) are continuous functions of latitude and longitude determined to maximize the likelihood of observed drifter trajectories. This provides a comprehensive description of drifter dynamics allowing for the simulation of drifter trajectories and the estimation of a wealth of dynamical statistics without the need to revisit the raw data. As examples, we compute global estimates of mean displacements over 4 days and lateral diffusivity. We use a probabilistic scoring rule to compare our model to commonly used transition matrix models. Our model outperforms others globally and in three specific regions. A drifter release experiment simulated using our model shows the emergence of concentrated clusters in the subtropical gyres, in agreement with previous studies on the formation of garbage patches. An advantage of the neural network model is that it provides a continuous‐in‐space representation and avoids the need to discretize space, overcoming the challenges of dealing with nonuniform data. Our approach, which embraces data‐driven probabilistic modeling, is applicable to many other problems in fluid dynamics and oceanography.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3