Estimating Uncertainty in Simulated ENSO Statistics

Author:

Planton Yann Y.12ORCID,Lee Jiwoo3ORCID,Wittenberg Andrew T.4ORCID,Gleckler Peter J.2,Guilyardi Éric56ORCID,McGregor Shayne17ORCID,McPhaden Michael J.2ORCID

Affiliation:

1. School of Earth Atmosphere and Environment Monash University Clayton VIC Australia

2. NOAA Pacific Marine Environmental Laboratory Seattle WA USA

3. Lawrence Livermore National Laboratory Livermore CA USA

4. NOAA Geophysical Fluid Dynamics Laboratory Princeton NJ USA

5. LOCEAN‐IPSL CNRS‐IRD‐MNHN‐Sorbonne Université Paris France

6. NCAS‐Climate University of Reading Reading UK

7. ARC Centre of Excellence for Climate Extremes Monash University Clayton VIC Australia

Abstract

AbstractLarge ensembles of model simulations are frequently used to reduce the impact of internal variability when evaluating climate models and assessing climate change induced trends. However, the optimal number of ensemble members required to distinguish model biases and climate change signals from internal variability varies across models and metrics. Here we analyze the mean, variance and skewness of precipitation and sea surface temperature in the eastern equatorial Pacific region often used to describe the El Niño–Southern Oscillation (ENSO), obtained from large ensembles of Coupled model intercomparison project phase 6 climate simulations. Leveraging established statistical theory, we develop and assess equations to estimate, a priori, the ensemble size or simulation length required to limit sampling‐based uncertainties in ENSO statistics to within a desired tolerance. Our results confirm that the uncertainty of these statistics decreases with the square root of the time series length and/or ensemble size. Moreover, we demonstrate that uncertainties of these statistics are generally comparable when computed using either pre‐industrial control or historical runs. This suggests that pre‐industrial runs can sometimes be used to estimate the expected uncertainty of statistics computed from an existing historical member or ensemble, and the number of simulation years (run duration and/or ensemble size) required to adequately characterize the statistic. This advance allows us to use existing simulations (e.g., control runs that are performed during model development) to design ensembles that can sufficiently limit diagnostic uncertainties arising from simulated internal variability. These results may well be applicable to variables and regions beyond ENSO.

Funder

Global Down Syndrome Foundation

Australian Research Council

U.S. Department of Energy

Lawrence Livermore National Laboratory

Office of Science

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3