A Coordinated Sea‐Ice Assimilation Scheme Jointly Using Sea‐Ice Concentration and Thickness Observations With a Coupled Climate Model

Author:

Liu X.12ORCID,Yao J.12,Zhang S.34ORCID,Wu T.12ORCID,Chen Z.5,Fang Y.12ORCID,Chu M.12ORCID,Yan J.12,Jie W.12

Affiliation:

1. CMA Earth System Modeling and Prediction Center Beijing China

2. Key Laboratory of Earth System Modeling and Prediction China Meteorological Administration Beijing China

3. Key Laboratory of Physical Oceanography, Ministry of Education/Institute for Advanced Ocean Study/Frontiers Science Center for Deep Ocean Multispheres and Earth System (DOMES) The College of Atmosphere and Ocean, Ocean University of China Qingdao China

4. Laoshan Laboratory Qingdao China

5. College of Ocean and Meteorology Guangdong Ocean University Guangzhou China

Abstract

AbstractFor jointly assimilating sea‐ice concentration (SIC) and sea‐ice thickness (SIT) observations into a global coupled climate system model consisting of sea‐ice component with multiple sea‐ice categories, we propose a new sea‐ice analysis update scheme in an ensemble assimilation framework and compare it with some previously used schemes. Different from the conventional scheme that often assigns SIC/SIT analysis to multiple sea‐ice categories according to the background ratios and thus directly updates the corresponding variables in model (i.e., direct‐update scheme), the new scheme converts SIC/SIT analysis into ice heating term to adjust the ice enthalpy using model freezing/melting physics and further updates the model sea‐ice state (i.e., enthalpy‐adjusting scheme). It has a capability in particularly adjusting multiple sea‐ice variables in addition to SIC and SIT in a coordinated way, and avoiding the artificial addition or elimination of sea‐ice in analysis that is often adopted in the direct‐update scheme. Evaluated by several sets of experiments assimilating satellite‐derived Arctic sea‐ice observations, the enthalpy‐adjusting scheme performs better than the direct‐update scheme in analysis of the Arctic SIT. Further, 4‐week forecasts after assimilation initialization exhibit slow growth of forecast error. Compared to the direct‐update scheme, the enthalpy‐adjusting scheme initialized forecasts show comparable skills in the SIC but significantly higher skills in the SIT, especially in the Arctic sea‐ice edge areas. These results highlight advantage of the enthalpy‐adjusting scheme that has promise to improve coupled data assimilation and reduce climate prediction uncertainty.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3