Assessment of Gravity Waves From Tropopause to Thermosphere and Ionosphere in High‐Resolution WACCM‐X Simulations

Author:

Liu H.‐L.1ORCID,Lauritzen P. H.2ORCID,Vitt F.13ORCID,Goldhaber S.2ORCID

Affiliation:

1. High Altitude Observatory, National Center for Atmospheric Research Boulder CO USA

2. Climate and Global Dynamics National Center for Atmospheric Research Boulder CO USA

3. Atmospheric Chemistry Observations and Modeling National Center for Atmospheric Research Boulder CO USA

Abstract

AbstractA new version of NCAR Whole Atmosphere Community Climate Model with thermosphere/ionosphere extension (WACCM‐X) has been developed. The main feature of this version is the species‐dependent spectral element (SE) dynamical core solved on a cubed sphere grid, eliminating the polar singularity and enabling simulations at high‐resolutions. Molecular viscosity and diffusion in the horizontal direction are also included. The Conservative Semi‐Lagrangian Multi‐Tracer Transport Scheme (CSLAM) is employed for the species transport. An efficient regridding scheme based on the Earth System Modeling Framework is used to map fields between the physics mesh and geomagnetic grid. Simulations have been performed at coarse (∼200 km and 0.25 scale height) and high (∼25 km and 0.1 scale height) resolutions. Spatial distribution of the resolved gravity waves from the high‐resolution simulations compares well with available observations in the middle and upper atmosphere. Analysis of the scale dependence of the gravity wave energy density and momentum flux shows that, while larger scale waves are dominant energetically at most latitudes, smaller scale waves contribute significantly to the total momentum flux, especially at mid‐high latitudes. The waves in the thermosphere are shown to be strongly modulated by the large‐scale wind through Doppler shift and molecular damping, and they cause large neutral atmosphere and plasma perturbations.

Funder

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3