Influence of Sediment Supply Timing on Bedload Transport and Bed Surface Texture During a Single Experimental Hydrograph in Gravel Bed Rivers

Author:

Hassan Marwan A.1ORCID,Li Wenqi12ORCID,Viparelli Enrica3ORCID,An Chenge4ORCID,Mitchell Alexander J.1

Affiliation:

1. Department of Geography The University of British Columbia Vancouver BC Canada

2. State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University Chengdu China

3. Department of Civil Engineering University of South Carolina Columbia SC USA

4. State Key Laboratory of Hydroscience and Engineering Department of Hydraulic Engineering Tsinghua University Beijing China

Abstract

AbstractChannel stability and sediment transport in gravel bed streams depend on temporally and spatially variable fluid forces, bed surface structures, armoring, and sediment supply/storage. Of particular interest here is the influence of sediment supply timing on bedload transport rate and grain size distribution, bed surface composition and channel morphology. We conducted flume experiments in a sediment feed flume with poorly sorted sediment. A symmetrical, identical stepped hydrograph was used with five different sediment feeding schemes: no feed, constant feed, rising‐limb only feed, falling‐limb only feed, and variable feed. The same sediment mass of 800 kg was fed during each experiment. Sediment transport rates ranged over five orders of magnitude regardless of feeding scheme. Clockwise hysteresis was observed for bedload transport rate and bedload grain size, that is, the transport rate was larger and coarser during the rising limb. Counterclockwise hysteresis was observed for the grain size distribution of the bed surface, that is, the bed surface was finest during the rising limb. In all experiments sediment yield during the rising was higher than during the falling limb, indicating that the rising limb is more capable to transport the supplied sediment. Our study provides insight on how timing of sediment supply influences sediment transport and bed surface during a single hydrograph, essential information for artificial sediment supply projects to restore and habilitate gravel bed streams.

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3