Affiliation:
1. State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University Chengdu China
2. Institute for Disaster Management and Reconstruction Sichuan University Chengdu China
3. Changjiang Waterway Institute of Planning and Design Wuhan China
4. Faculty of Engineering and Digital Technologies University of Bradford Bradford UK
5. College of Civil Engineering Qingdao University of Technology Qingdao China
Abstract
AbstractRiver restoration projects often involve vegetation planting to retain sediment and stabilize riverbanks. Laboratory experiments have explored the impact of rigid emergent vegetation canopies on bed morphology. Inside canopies, bed erosion is attributed to vegetation‐induced turbulent kinetic energy (TKE). Based on the in‐canopy local TKE and the criteria for sediment movement, a method is established and validated for predicting the length of the bed erosion region. In the bare channel, bed erosion is related to the ratio of canopy length to flow adjustment distance, L/LI, and exhibits two trends. At L/LI < 1, the maximum depth, ds(bare), and length, Ls(bare), of the bed erosion region increase with increasing canopy length. At L/LI ≥ 1, ds(bare) and Ls(bare) are not influenced by the canopy length and remain constant. In vegetated regions with the same length and plant density, discontinuous canopies (streamwise interval s ≥ canopy width D) yield weaker bed erosion than continuous canopies. The mutual influence between two canopies must be considered if the canopy interval satisfies s < 3D. These results provide insights for designing vegetation canopies for river restoration projects.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Publisher
American Geophysical Union (AGU)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献