Monitoring Water Level of a Surficial Aquifer Using Distributed Acoustic Sensing and Ballistic Surface Waves

Author:

Sobolevskaia Valeriia1ORCID,Ajo‐Franklin Jonathan1ORCID,Cheng Feng2ORCID,Dou Shan3,Lindsey Nathaniel J.4ORCID,Wagner Anna5ORCID

Affiliation:

1. Department of Earth, Environmental, and Planetary Sciences Rice University Houston TX USA

2. School of Earth Sciences Zhejiang University Hangzhou China

3. Loblaw Digital Vancouver BC Canada

4. FiberSense Ltd. Sydney NSW Australia

5. U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) Fairbanks AK USA

Abstract

AbstractGroundwater resources play an increasingly crucial role in providing the water required to sustain the environment. However, our understanding of the state of surficial aquifers and their spatiotemporal dynamics remains poor. In this study, we demonstrate how Rayleigh wave velocity variation can be used as a direct indicator of changes in the water level of a surficial aquifer in a discontinuous permafrost environment. Distributed acoustic sensing data, collected on a trenched fiber‐optic cable in Fairbanks, AK, was processed using the multichannel analysis of surface waves approach to obtain temporal velocity variations. A semi‐permanent surface orbital vibrator was utilized to provide a repeatable source of energy for monitoring. To understand the observed velocity perturbations, we developed a rock physics model (RPM) representing the aquifer with the underlying permafrost and accounting for physical processes associated with water level change. Our analyses demonstrated a strong correlation between precipitation‐driven head variation and seismic velocity changes at all recorded frequencies. The proposed model accurately predicted a recorded 3% velocity increase for each 0.5 m of head drop and indicated that the pore pressure effect accounted for approximately 75% of the observed phase velocity change. Surface wave inversion and sensitivity analysis suggested that the high velocity contrast in the permafrost table shifts the surface wave sensitivity toward the first 3 m of soil where hydrological forcing occurs. This case study demonstrates how surface wave analysis combined with an RPM can be used for quantitative interpretation of the acoustic response of surficial aquifers.

Funder

Strategic Environmental Research and Development Program

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3