Contaminant Transport Modeling and Source Attribution With Attention‐Based Graph Neural Network

Author:

Pang Min123,Du Erhu23ORCID,Zheng Chunmiao345ORCID

Affiliation:

1. College of Hydrology and Water Resources Hohai University Nanjing China

2. The National Key Laboratory of Water Disaster Prevention Hohai University Nanjing China

3. Yangtze Institute for Conservation and Development Hohai University Nanjing China

4. Eastern Institute for Advanced Study Eastern Institute of Technology Ningbo China

5. Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control School of Environmental Science and Engineering Southern University of Science and Technology Shenzhen China

Abstract

AbstractGroundwater contamination induced by anthropogenic activities has long been a global issue. Characterizing and modeling contaminant transport processes is crucial to groundwater protection and management. However, challenges still exist in process complexity, data constraint, and computational cost. In the era of big data, the growth of machine learning has led to new opportunities in studying contaminant transport in groundwater systems. In this work, we introduce a new attention‐based graph neural network (aGNN) for modeling contaminant transport with limited monitoring data and quantifying causal connections between contaminant sources (drivers) and their spreading (outcomes). In five synthetic case studies that involve varying monitoring networks in heterogeneous aquifers, aGNN is shown to outperform LSTM‐based (long‐short term memory) and CNN‐ based (convolutional neural network) methods in multistep predictions (i.e., transductive learning). It also demonstrates a high level of applicability in inferring observations for unmonitored sites (i.e., inductive learning). Furthermore, an explanatory analysis based on aGNN quantifies the influence of each contaminant source, which has been validated by a physics‐based model with consistent outcomes with an R2 value exceeding 92%. The major advantage of aGNN is that it not only has a high level of predictive power in multiple scenario evaluations but also substantially reduces computational cost. Overall, this study shows that aGNN is efficient and robust for highly nonlinear spatiotemporal learning in subsurface contaminant transport, and provides a promising tool for groundwater management involving contaminant source attribution.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3