Affiliation:
1. Southwest Watershed Research Center USDA‐ARS Tucson AZ USA
2. Department of Mathematics University of Oxford Oxford UK
3. Department of Mathematics University of California Los Angeles CA USA
Abstract
AbstractFor thousands of years, humans have altered the movement of water through construction of earthworks. These earthworks remain in landscapes, where they continue to alter hydrology, even where structures have long since been abandoned. Management of lands containing earthworks requires an understanding of how the earthworks impact hydrology and knowledge of where the structures are located in the landscape. Various methods for detecting topographic features exist in the literature, including a set of rule and threshold‐based techniques and machine learning methods. These tools are either labor‐intensive or require special pre‐processing or a priori assumptions about structures that limit generalizability. Here, we test a topological analysis tool called “persistence” to determine if it is useful for earthwork detection in rangelands. We found that persistence can be used to detect earthworks with 83% precision and 64% accuracy. Breached berms and berms with significant upslope sedimentation are most likely not to be detected using persistence. These results indicate that persistence can be useful for terrain analysis, and it has the potential to substantially reduce manual effort in feature detection by identifying regions where berms may be found.
Funder
National Science Foundation
Publisher
American Geophysical Union (AGU)