Where in the World Are Vegetation Patterns Controlled by Hillslope Water Dynamics?

Author:

Li Shuping1ORCID,Yamazaki Dai2ORCID,Zhou Xudong2ORCID,Zhao Gang2ORCID

Affiliation:

1. Department of Civil Engineering The University of Tokyo Tokyo Japan

2. Institute of Industrial Science The University of Tokyo Tokyo Japan

Abstract

AbstractSome recent land surface models can explicitly represent land surface process and focus more on sub‐grid terrestrial features. Many studies have involved the analysis of how hillslope water dynamics determine vegetation patterns and shape ecologically and hydrologically important landscapes, such as desert riparian and waterlogged areas. However, the global locations and abundance of hillslope‐dominated landscapes remain unclear. To address this knowledge gap, we propose a globally applicable method that employs high‐resolution elevation, hydrography, and land cover data to concisely resolve explicit land cover heterogeneity for the mapping of hillslope‐dominated landscapes. First, we aggregate pixels into unit catchments to represent topography‐based hydrological units, and then vertically discretize them into height bands to approximate the hillslope profile. The dominant land cover type in each height band is determined, and the uphill land cover transition is analyzed to identify hillslope‐dominated landscapes. The results indicate that hillslope‐dominated landscapes are distributed extensively worldwide in diverse climate zones. Notably, some landscapes, including gallery forests in northeastern Russia and desert riparian in the Horn of Africa, are newly revealed. Furthermore, the proposed strategy enables more accurate representation of explicit land cover heterogeneity than does the simple downscaling of a rectangular grid from larger to smaller units, revealing its capability to concisely resolve land cover heterogeneity in land surface modeling with relatively high accuracy. Overall, we present the extensive global distribution of landscapes shaped by hillslope water dynamics, underscoring the importance of the explicit resolution of heterogeneity in land surface modeling.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3