Automated Symbolic Upscaling: 2. Model Generation for Extended Applicability Regimes

Author:

Pietrzyk Kyle1ORCID,Battiato Ilenia1ORCID

Affiliation:

1. Department of Energy Resources Engineering Stanford University Stanford CA USA

Abstract

AbstractIn this second part of the two paper series, we detail an algorithmic procedure for systematically implementing the generalized closure form strategy presented in Part 1. This strategy extends the applicability of homogenized models with respect to classical homogenization theory, as demonstrated in Part 1 where upscaled models are rigorously derived in moderately reactive physical regimes. After encoding the algorithm into Symbolica, an automated upscaling framework, we upscale two reactive mass transport problems and numerically validate the resulting nonlinear homogenized models by showing the absolute error estimates predicted by homogenization theory are satisfied. In both problems, nontrivial closure forms and closure problems are automatically formulated using the encoded strategy with no human interaction, nor prior knowledge regarding the closure required for the systems. We hope these demonstrations spark further interest in automated analytical frameworks for multiscale modeling, as such capabilities are invaluable for generating rigorous multiscale models of complex phenomena in porous media.

Funder

U.S. Department of Energy

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3