Observational Quantification of Tropical High Cloud Changes and Feedbacks

Author:

Raghuraman Shiv Priyam1ORCID,Medeiros Brian2ORCID,Gettelman Andrew3ORCID

Affiliation:

1. Advanced Study Program NSF National Center for Atmospheric Research Boulder CO USA

2. Climate and Global Dynamics Laboratory NSF National Center for Atmospheric Research Boulder CO USA

3. Atmospheric Sciences & Global Change Pacific Northwest National Laboratory Richland WA USA

Abstract

AbstractThe response of tropical high clouds to surface warming and their radiative feedbacks are uncertain. For example, it is uncertain whether their coverage will contract or expand in response to surface warming and whether such changes entail a stabilizing radiative feedback (iris feedback) or a neutral feedback. Global satellite observations with passive and active remote sensing capabilities over the last two decades can now be used to address such effects that were previously observationally limited. Using these observations, we show that the vertically averaged coverage exhibits no significant contraction or expansion. However, we find a reduction in coverage at the altitude where high clouds peak and are particularly radiatively‐relevant. This results in a negative longwave (LW) feedback and a positive shortwave (SW) feedback which cancel to yield a near‐zero high‐cloud amount feedback, providing observational evidence against an iris feedback. Next, we find that tropical high clouds have risen but have also warmed, leading to a positive, but small, high‐cloud altitude feedback dominated by the LW feedback. Finally, we find that high clouds have been thinning, leading to a near‐zero high‐cloud optical depth feedback from a cancellation between negative LW and positive SW feedbacks. Overall, high clouds lead the total tropical cloud feedback to be small due to the negative LW‐positive SW feedback cancellations.

Funder

National Science Foundation

U.S. Department of Energy

Climate Program Office

Publisher

American Geophysical Union (AGU)

Reference70 articles.

1. When Will MISR Detect Rising High Clouds?

2. Dissecting Anvil Cloud Response to Sea Surface Warming

3. Thermodynamic control of anvil cloud amount

4. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change;Boucher O.,2013

5. Insights into low-latitude cloud feedbacks from high-resolution models

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3