Insights Into NOx and HONO Chemistry in the Tropical Marine Boundary Layer at Cape Verde During the MarParCloud Campaign

Author:

Jiang Ying12ORCID,Hoffmann Erik H.1ORCID,Tilgner Andreas1ORCID,Aiyuk Marvel B. E.1ORCID,Andersen Simone T.3ORCID,Wen Liang14ORCID,van Pinxteren Manuela1ORCID,Shen Hengqing2ORCID,Xue Likun2ORCID,Wang Wenxing2,Herrmann Hartmut15ORCID

Affiliation:

1. Atmospheric Chemistry Department (ACD) Leibniz Institute for Tropospheric Research (TROPOS) Leipzig Germany

2. Environment Research Institute Shandong University Qingdao China

3. Max‐Planck‐Institut für Chemie (MPIC) Mainz Germany

4. Now at Chinese Research Academy of Environmental Sciences Beijing China

5. School of Environmental Science and Engineering Shandong University Qingdao China

Abstract

AbstractChemical processing of reactive nitrogen species, especially of NOx (= NO + NO2) and nitrous acid (HONO), determines the photochemical ozone production and oxidation capacity in the troposphere. However, sources of HONO and NOx in the remote marine atmosphere are still poorly understood. In this work, the multiphase chemistry mechanism CAPRAM in the model framework SPACCIM was used to study HONO formation at Cape Verde (CVAO) in October 2017, adopted with the input of current parameterizations for various HONO sources. Three simulations were performed that adequately reproduced ambient HONO levels and its diurnal pattern. The model performance for NOx and O3 improves significantly when considering dust‐surface‐photocatalytic conversions of reactive nitrogen compounds with high correlation coefficients up to 0.93, 0.56, and 0.89 for NO, NO2, and O3, respectively. Photocatalytic conversion of the adsorbed HNO3 on dust is modeled to be the predominant contributor for daytime HONO at CVAO, that is, accounting for about 62% of the chemical formation rate at noontime. In contrast, the ocean‐surface‐mediated conversion of NO2 to HONO and other discussed pathways are less important. The average OH levels at midday (9:00–16:00) modeled for cluster trajectory 1, 2, and 3 are 5.2, 5.1, and 5.2 × 106 molecules cm−3, respectively. Main OH formation is driven by O3 photolysis with a contribution of 74.6% to the total source rate, while HONO photolysis is negligible (∼1.8%). In summary, this study highlights the key role of dust aerosols for HONO formation and NOx cycling at CVAO and possibly in other dust‐affected regions, urgently calling for further investigations using field and model studies.

Funder

Horizon 2020 Framework Programme

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3