Representation of Modes of Atmospheric Circulation Variability by Self‐Organizing Maps: A Study Using Synthetic Data

Author:

Stryhal J.1ORCID,Beranová R.1ORCID,Huth R.12ORCID

Affiliation:

1. Institute of Atmospheric Physics Czech Academy of Sciences Prague Czechia

2. Faculty of Science Charles University Prague Czechia

Abstract

AbstractSelf‐organizing maps (SOMs) represent a popular tool for classifying atmospheric circulation patterns. One of their traditional applications has been to link typical synoptic‐scale patterns to large‐scale teleconnections, or modes of low‐frequency circulation variability. However, recently there have been attempts to interpret an array of SOM nodes directly as a continuum of teleconnections, grounded in SOMs' ability to combine two otherwise distinct approaches to data analysis, that is, exploratory projection (or, dimensionality reduction) and classification. This conceptual shift calls for methodological studies that would improve our understanding of how orthogonal modes of variability, typically used to describe teleconnections, relate to SOM outputs. Here, we define three idealized modes of variability and use their various combinations to generate synthetic data sets. Many variants of SOMs are generated for SOMs of various shapes and sizes. The results show that projection of modes on a SOM array is sensitive not only to data structure, but also to various SOM parameters. The leading mode of variability projects rather strongly on SOMs if its explained variance is markedly higher than that of the second‐order mode; the remaining modes project considerably more weakly, and all modes tend to blend when their explained variance is similar, which leads to underrepresentation of some phases of modes and/or combinations of modes among the SOM patterns. Furthermore, we show that some features of SOM topology that were previously considered a proof of data nonlinearity appear even if the underlying modes of variability are strictly linear.

Funder

Grantová Agentura České Republiky

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3