Affiliation:
1. Department of Atmospheric and Environmental Sciences University at Albany State University of New York Albany NY USA
Abstract
AbstractThe Community Earth System Model version 1 (CESM1) and version 2 (CESM2)'s abilities to simulate the impacts of Atlantic multidecadal variability (AMV) and Pacific multidecadal variability (PMV) on South American precipitation and temperature have not been assessed, and how the AMV and PMV modulate each other's influences on South American climate is not well understood. Here we use observations, reanalyses, and CESM1 and CESM2 simulations from 1920 to 2015 to study those problems. The models can reproduce the observed precipitation and temperature responses to AMV well, but can only roughly reproduce such responses to PMV. The precipitation response over the South Atlantic convergence zone (SACZ) is better simulated by CESM2 compared to CESM1, which is associated with an improved horizontal moisture flux over this region. However, the models cannot accurately simulate the observed differences between the influences of Pacific interannual and multidecadal variability on South American precipitation and temperature. The impacts of AMV and PMV on South American precipitation are modulated by the other mode via changes in horizontal moisture flux over the SACZ and River Plate basin in summer, as well as changes in vertical motion over the equatorial regions in winter. Similarly, the impacts of AMV and PMV on South American temperature are also modulated by the other mode. Over water‐limited regions, such as northeastern Brazil and southern Argentina, the precipitation and temperature responses are anti‐correlated, possibly via surface evaporation.
Funder
National Science Foundation
Publisher
American Geophysical Union (AGU)