Wavelet Analysis of Differential TEC Measurements Obtained Using LOFAR

Author:

Boyde Ben1ORCID,Wood Alan1ORCID,Dorrian Gareth1ORCID,Sweijen Frits2,de Gasperin Francesco34,Mevius Maaijke5ORCID,Beser Kasia5,Themens David1ORCID

Affiliation:

1. Space Environment and Radio Engineering, School of Engineering, University of Birmingham Birmingham UK

2. Leiden Observatory, Leiden University RA Leiden The Netherlands

3. INAF ‐ Istituto di Radioastronomia Bologna Italy

4. Hamburger Sternwarte, University of Hamburg Hamburg Germany

5. ASTRON – The Netherlands Institute for Radio Astronomy PD Dwingeloo The Netherlands

Abstract

AbstractRadio interferometers used to make astronomical observations, such as the LOw Frequency ARray (LOFAR), experience distortions imposed upon the received signal due to the ionosphere as well as those from instrumental errors. Calibration using a well‐characterized radio source can be used to mitigate these effects and produce more accurate images of astronomical sources, and the calibration process provides measurements of ionospheric conditions over a wide range of length scales. The basic ionospheric measurement this provides is differential Total Electron Content (TEC, the integral of electron density along the line of sight). Differential TEC measurements made using LOFAR have a precision of <1 mTECu and therefore enable investigation of ionospheric disturbances which may be undetectable to many other methods. We demonstrate an approach to identify ionospheric waves from these data using a wavelet transform and a simple plane wave model. The noise spectra are robustly characterized to provide uncertainty estimates for the fitted parameters. An example is shown in which this method identifies a wave with an amplitude an order of magnitude below those reported using Global Navigation Systems Satellite TEC measurements. Artificially generated data are used to test the accuracy of the method and establish the range of wavelengths which can be detected using this method with LOFAR data. This technique will enable the use of a large and mostly unexplored data set to study traveling ionospheric disturbances over Europe.

Funder

Leverhulme Trust

Publisher

American Geophysical Union (AGU)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3