Application of Wide‐Beam Transmission for Advanced Operations of SuperDARN Borealis Radars in Monostatic and Multistatic Modes

Author:

Rohel R. A.1ORCID,Ponomarenko P.1ORCID,McWilliams K. A.1ORCID

Affiliation:

1. University of Saskatchewan Saskatoon SK Canada

Abstract

AbstractThe Super Dual Auroral Radar Network (SuperDARN) consists of more than 30 monostatic high‐frequency (HF, 8–20 MHz) radars to study dynamic processes in the ionosphere. SuperDARN provides maps of global‐scale ionospheric plasma drift circulation from the mid‐latitudes to the poles. The conventional SuperDARN radars consecutively scan through 16 beam directions with a lower limit of 1 minute to sample the entire field of view. In this work, we use the advanced capabilities of the recently developed Borealis digital SuperDARN radar system. Combining a wide transmission beam with multiple narrow reception beams allows us to sample all conventional beam directions simultaneously and to speed up scanning of the entire field‐of‐view by up to 16 times without noticeable deterioration of the data quality. The wide‐beam emission also enabled the implementation of multistatic operations, where ionospheric scatter signals from one radar are received by other radars with overlapping viewing areas. These novel operations required the development of a new model to determine the geographic location of the source of the multistatic radar echoes. Our preliminary studies showed that, in comparison with the conventional monostatic operations, the multistatic operations provide a significant increase in geographic coverage, in some cases nearly doubling it. The multistatic data also provide additional velocity vector components, increasing the likelihood of reconstructing full plasma drift velocity vectors. The developed operational modes can be readily implemented at other fully digital SuperDARN radars.

Funder

Canadian Space Agency

Natural Sciences and Engineering Research Council of Canada

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3