Climatology of Dayside E‐Region Zonal Neutral Wind Shears From ICON‐MIGHTI Observations

Author:

Li Minjing1ORCID,Deng Yue1ORCID,Harding Brian J.2ORCID,England Scott3ORCID

Affiliation:

1. University of Texas in Arlington Arlington TX USA

2. Space Sciences Laboratory University of California Berkeley CA USA

3. Virginia Tech Blacksburg VA USA

Abstract

AbstractLarge vertical shears in the E‐region neutral zonal winds can lead to ion convergences and contribute to plasma irregularities, but climatological studies of vertical shears of horizontal winds in a global scale are lacking due to the limitations of data coverage. The Ionospheric Connection Explorer (ICON) Michelson Interferometer for Global High‐resolution Thermospheric Imaging (MIGHTI) has provided neutral wind observations with an unprecedented spatial coverage. In this study, the climatology of dayside E‐region neutral wind shears has been examined using 2‐years’ data (2020–2021). Specifically, the study focuses on large wind shears with a magnitude larger than 20 m/s/km, since large wind shears are more likely to cause significant perturbation in the ionosphere‐thermosphere (I‐T) system. The results show that the probability of occurrence of large shears is strongly dependent on the altitude, with the vertical profile varying with shear direction, latitude, season, and local time. In general, below 110 km altitude, large negative shears of the eastward wind are most likely to happen during summer at 8–10 LT in 25°N–40°N latitudes, showing a high probability across nearly all longitudes. Meanwhile, large positive shears tend to occur in 10°S–10°N latitudes, with peak probabilities exhibiting roughly consistent longitudinal structures across 8–10 LT in all seasons. The discrepancies between positive and negative large shear distributions underlie different global tidal influences. The large‐shear occurrence probabilities above 110 km are generally small, except in latitudes above 25°N during the winter for positive shears.

Funder

National Aeronautics and Space Administration

Air Force Office of Scientific Research

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3