A Regional Model of Topside Ionospheric Effective Scale Heights Derived From Ionosonde and GNSS TEC

Author:

Jiang Chunhua1ORCID,Liu Zhichao1,Zhao Cong1,Liu Tongxin1ORCID,Yang Guobin1,Shen Hua2,Huang Wengeng2ORCID

Affiliation:

1. Department of Space Physics School of Electronic Information Wuhan University Wuhan China

2. National Space Science Center Chinese Academy of Sciences Beijing China

Abstract

AbstractIonospheric scale height is critical for the structure of electron density profile in the ionosphere. However, mostly, the effective scale heights (fitted with mathematical functions) instead of topside ionospheric scale heights were used to reconstruct the topside profile. In this study, a new method was proposed to estimate topside ionospheric effective scale heights from ionosonde and Global Navigation Satellite System (GNSS) vertical total electron content (TEC). First, the bottomside electron density profile can be estimated from ionograms. Then, combined the parameters of the F2 layer and effective scale heights, topside electron density profile can be estimated by Epstein Layer. Furthermore, ionosonde TEC can be compared with GNSS vertical TEC by adjusting effective scale heights to obtain best‐fit ionosonde TEC and effective scale heights. In this study, ionosonde and GNSS TEC data recorded at Zhangye station (39.40°N, 100.13°E) were used to test the performance. Results show that diurnal and seasonal characteristics of effective scale heights are consistent with previous studies. Furthermore, the Empirical Orthogonal Function technique was used to build a regional and empirical model of effective scale heights. Results show that the accuracy (between ±2.5 TECU) of ionosonde TEC are about 91.26% by comparing with GNSS TEC. Considered that the traditional methods mostly underestimated TEC, it indicates that the accuracy of ionosonde TEC can be improved significantly by the new model of effective scale heights. Furthermore, results show that the topside electron densities estimated by the proposed method are comparable with in situ observations measured by Swarm B.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3