Characterization of the Ionospheric Vertical Error Correlation Lengths Based on Global Ionosonde Observations

Author:

Yuan L.1ORCID,Kodikara Timothy1ORCID,Hoque M. M.1

Affiliation:

1. Institute for Solar‐Terrestrial Physics German Aerospace Center (DLR) Neustrelitz Germany

Abstract

AbstractData assimilation is one of the most important approaches to monitoring the variations of ionospheric electron densities. The construction of the background error covariance matrix is an important component of ionospheric data assimilations. To construct the background error covariance matrix, the information about the spatial ionospheric correlations is required. We present a statistical analysis on the ionospheric vertical error correlation length (VCL) based on a global network of ionosondes and the Neustrelitz Electron Density Model. We show that the locally derived VCL is well‐defined and the VCL does not show a considerable dependency on the geographical seasons while local time dependencies of the VCL are shown to be present. A novel VCL model is also established based on the ionospheric scale heights. We show that the ionospheric VCL can be characterized by the variance ratio between the ionosphere model and ionospheric measurements. The altitudinal variations of VCLs are controlled by the interactions between the inherent VCLs of the ionosphere model and the measurements. Two experiments are conducted at two different latitudes based on the proposed model. The results show that the proposed model is stable and well‐correlated with the observed VCLs, which implies a potential to be generalized for a global correlation model. The proposed model can be used in the temporal evolution of error covariance matrices in the ionospheric 4D‐Variational (4D‐Var) assimilations, which may overcome the main drawbacks of the static error covariance specifications in the ionospheric 4D‐Var assimilations.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3