An Empirical Model of the Occurrence Rate of Low Latitude Post‐Sunset Plasma Irregularities Derived From CHAMP and Swarm Magnetic Observations

Author:

Stolle C.1ORCID,Siddiqui T. A.1ORCID,Schreiter L.23ORCID,Das S. K.1,Rusch I.1,Rother M.3,Doornbos E.4ORCID

Affiliation:

1. Leibniz Institute of Atmospheric Physics at the University of Rostock Kühlungsborn Germany

2. Institute of Geodesy Technical University of Berlin Berlin Germany

3. GFZ German Research Centre for Geosciences Helmholtz Centre Potsdam Potsdam Germany

4. Royal Netherlands Meteorological Institute—KNMI De Bilt The Netherlands

Abstract

AbstractThe prediction of post‐sunset equatorial plasma depletions (EPDs), often called ionospheric plasma bubbles, has remained a challenge for decades. In this study, we introduce the Ionospheric Bubble Probability (IBP) model, an empirical model to predict the occurrence probability of EPDs derived from 9 years of CHAMP and 9 years of Swarm magnetic field measurements. The model predicts the occurrence probability of EPDs for a given longitude, day of year, local time and solar activity, for the altitude range of about 350–510 km, and low geographic latitudes of ±45°. IBP has been found to successfully reconstruct the distribution of EPDs as reported in previous studies from independent data. IBP has been further evaluated using 1‐year of untrained data of the Ionospheric Bubble Index (IBI). IBI is a Level 2 product of the Swarm satellite mission used for EPD identification. The relative operating characteristics (ROC) curve shows positive excursion above the no‐skill line with Hanssen and Kuiper's Discriminant (H&KSS) score of 0.52, 0.51, and 0.55 at threshold model output of 0.16 for Swarm A, B, and C satellites. Additionally, the reliability plots show proximity to the diagonal line with a decent Brier Skill Score (BSS) of 0.249, 0.210, and 0.267 for Swarm A, B, and C respectively at 15% climatological occurrence rate. These tests indicate that the model performs significantly better than a no‐skill forecast. The IBP model offers compelling glimpses into the future of EPD forecasting, thus demonstrating its potential to reliably predict EPD occurrences. The IBP model is publicly available.

Funder

European Space Agency

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3