A Real‐Time Prediction System of the Intensity of Solar Energetic Proton Events Based on a Solution of the Diffusion Equation

Author:

Zhang Y.123ORCID,Wang Y.12ORCID,Li X.12,Zuo P. B.24ORCID

Affiliation:

1. School of Science Harbin Institute of Technology Shenzhen People's Republic of China

2. Shenzhen Key Laboratory of Numerical Prediction for Space Storm Harbin Institute of Technology Shenzhen People's Republic of China

3. School of Physics & Astronomy University of Glasgow Glasgow UK

4. Key Laboratory of Solar Activity and Space Weather National Space Science Center Chinese Academy of Sciences Beijing People's Republic of China

Abstract

AbstractIn this study, based on solar energetic particle (SEP) events classification and a solution of the diffusion equation, we present an efficient system, HITSEP, to predict the intensities in different energy channels (P4 15.0–44.0 MeV, P5 40.0–80.0 MeV, and P6 80.0–165.0 MeV) of energetic proton events observed by GOES spacecraft. The system can predict the rising phase (especially the peak time and peak intensity) of the energetic proton events using only a small amount of data at the beginning of the solar energetic proton events. Among the events that meet the conditions for the use of our prediction system from 2003 to 2017, for P4, P5, and P6 channels, the median Warning Times are 3.70, 2.52, and 1.69 hr; the median Error of the Intensity for events are 0.43, 0.23, 0.34 orders of magnitude; the median Error of the Peak Time for events are 2.53, 0.55, 0.43 hr, respectively. Our system is based on physical mechanisms and has a high accuracy in forecasting the peak intensity with a strict definition of the error. The HITSEP system has huge potential to apply in the space weather forecast. The application of the HITSEP system in space weather forecasting is very promising.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3