Tracing Sediment Melt Activity in the Sub‐Continental Lithosphere: Insights From Zn‐Fe Stable Isotopes

Author:

Zhang Ganglan12ORCID,Liu Yongsheng2ORCID,Xu Rong3,Moynier Frédéric4ORCID,Zhu Yangtao2,Ren Huange2,Jiang Xin2,Li Ming2

Affiliation:

1. Key Laboratory of Marine Mineral Resources Ministry of Natural Resources Guangzhou Marine Geological Survey China Geological Survey Guangzhou China

2. State Key Laboratory of Geological Processes and Mineral Resources School of Earth Sciences China University of Geosciences Wuhan China

3. State Key Laboratory of Ore Deposit Geochemistry Institute of Geochemistry, Chinese Academy of Sciences Guiyang China

4. Université Paris Cité Institut de Physique du Globe de Paris CNRS UMR 7154 Paris Cedex 05 France

Abstract

AbstractRecycling of upper crustal sediments through slab subduction contributes to sub‐continental lithospheric refertilization and heterogeneity. However, the nature of recycled upper crustal components is unclear and direct evidence for sediment melt activity in the sub‐continental lithosphere is lacking. Here, we integrate major and trace elements, zircon U‐Pb dating, Sr‐Nd‐Zn‐Fe isotopic compositions of clinopyroxenites (crust‐mantle boundary) and a “glassy” xenolith from the North China Craton to relate their petrogenesis to the potential recycling of upper continental crust and provide direct insight into the sediment melt‐rock interaction. The clinopyroxenites have relatively uniform δ56Fe values (the permil deviation of the 56Fe/54Fe ratio from the IRMM014; −0.05‰–0.07‰, except for one outlier) and are not affected by melt metasomatism. The clinopyroxenites have highly variable whole‐rock δ66Zn values (the permil deviation of the 66Zn/64Zn ratio from the JMC‐Lyon standard) between 0.04‰ and 0.46‰, that closely correlate with Rb/La, K/U, Ba/Th, and Th/Nb ratios, and generate arrays that trend toward a composition similar to the “glassy” xenolith. The “glassy” xenolith has a high δ66Zn value (0.43‰ ± 0.05‰, 2SD) and a significantly low 143Nd/144Nd ratio (0.510991). This evidence implies that the “glassy” xenolith may represent a quenched sediment melt formed by the melting of carbonate‐bearing terrigenous sediments that may also be responsible for the metasomatism of clinopyroxenite xenoliths. The geochemical evidence from the “glassy” and clinopyroxenite xenoliths provides a direct evidence for the activity of sediment melt with upper continental crust components in the sub‐continental lithosphere.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

State Key Laboratory of Geological Processes and Mineral Resources

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3