Deformation Mechanisms, Microstructures, and Seismic Anisotropy of Wadsleyite in the Earth's Transition Zone

Author:

Ledoux Estelle E.12ORCID,Saki Morvarid3,Gay Jeffrey P.1ORCID,Krug Matthias4ORCID,Castelnau Olivier5ORCID,Zhou Wen‐Yi6ORCID,Zhang Jin S.6,Chantel Julien1,Hilairet Nadège1ORCID,Bykov Maxim78ORCID,Bykova Elena910ORCID,Aprilis Georgios11ORCID,Svitlyk Volodymyr1213ORCID,Garbarino Gaston12,Sanchez‐Valle Carmen4,Thomas Christine3ORCID,Speziale Sergio14ORCID,Merkel Sébastien1ORCID

Affiliation:

1. Univ. Lille CNRS INRAE Centrale Lille UMR 8207 ‐ UMET ‐ Unité Matériaux et Transformations Lille France

2. Now at Department of Geology and Geophysics University of Utah Salt Lake City UT USA

3. Institute of Geophysics University of Münster Münster Germany

4. Institute of Mineralogy University of Münster Münster Germany

5. Laboratoire PIMM UMR CNRS 8006 ENSAM CNAM Paris France

6. Department of Geology and Geophysics Texas A&M University College Station TX USA

7. Bayerisches Geoinstitut University of Bayreuth Bayreuth Germany

8. Now at Institute of Inorganic Chemistry University of Cologne Cologne Germany

9. Deutsches Elektronen‐Synchrotron DESY Hamburg Germany

10. Now at the Institut für Geowissenschaften Goethe‐Universität Frankfurt Frankfurt am Main Germany

11. Laboratory of Crystallography Materials Physics and Technology at Extreme Conditions Universität Bayreuth Bayreuth Germany

12. ESRF ‐ The European Synchrotron Grenoble France

13. Helmhotz‐Zentrum Dresden‐Rossendorf Institute of Resource Ecology Dresden Germany

14. GFZ German Research Centre for Geosciences Potsdam Germany

Abstract

AbstractWadsleyite is the dominant mineral of the upper portion of the Earth's mantle transition zone (MTZ). As such, understanding plastic deformation of wadsleyite is relevant for the interpretation of observations of seismic signals from this region in terms of mantle flow. Despite its relevance, however, the deformation mechanisms of wadsleyite and their effects on microstructures and anisotropy are still poorly understood. Here, we present the results of new deformation experiments on polycrystalline wadsleyite at temperatures of 1400–1770 K and pressures between 12.3 and 20.3 GPa in the laser‐heated diamond anvil cell. We rely on multigrain X‐ray crystallography to follow the evolution of individual grain orientations and extract lattice preferred orientations at the sample scale at different steps of the experiments. A comparison of experimental results of our work and the literature with polycrystal plasticity simulations, indicates that 〈111〉{101} is the most active slip system of dislocations in wadsleyite at all investigated conditions. Secondary slip systems such as [001](010), [100](001), and [100]{0kl}, however, play a critical role in the resulting microstructures and their activity depends on both temperature and water content, from which we extract an updated deformation map of wadsleyite at MTZ conditions. Lastly, we propose several seismic anisotropy models of the upper part of the MTZ, depending on temperature, geophysical context, and levels of hydration that will be useful for the interpretation of seismic signals from the MTZ in terms of mantle flow and water content.

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3