Origin of Late Cenozoic Basaltic Magmatism in Inner Mongolia, NE China: Constraints From Sr–Nd–Hf–Pb–Mo–He Isotopes

Author:

Lei Ming123,Chen Jianlin12ORCID,Zhang Maoliang4

Affiliation:

1. State Key Laboratory of Isotope Geochemistry Guangzhou Institute of Geochemistry Chinese Academy of Sciences Guangzhou China

2. CAS Centre for Excellence in Deep Earth Sciences Guangzhou China

3. Research Institute for Marine Resources Utilization Japan Agency for Marine‐Earth Science and Technology Yokosuka Japan

4. Institute of Surface‐Earth System Science School of Earth System Science Tianjin University Tianjin China

Abstract

AbstractThis paper presents a study of the late Cenozoic Chifeng basalts (CBs) of NE China, including their olivine He isotopic compositions, whole‐rock major‐ and trace‐element contents, and whole‐rock Sr–Nd–Hf–Pb–Mo isotopic compositions, with the aim of constraining their mantle source. Results show that the basalts have high MgO, low CaO contents, and high FeOT/MnO values, which indicate that their mantle lithology was most likely pyroxenite. The CBs also exhibit ocean‐island‐basalt‐like trace‐element patterns (e.g., enrichment in light rare earth elements and high‐field‐strength elements) and have depleted Sr–Nd–Hf and relatively radiogenic Pb isotopic compositions, requiring both depleted and enriched components in their mantle. The low olivine He (3He/4He = 0.8–5.5 Ra) and whole‐rock Mo (δ98/95Mo = −0.71‰ to −0.18‰) isotopic values of the CBs, together with geophysical evidence, indicate that the rocks were derived from a depleted MORB mantle (DMM) enriched by recycled oceanic crust that was sourced from the mantle transition zone (MTZ). During the late Cenozoic, ascending wet mantle plumes triggered by dehydration of a stagnant Pacific oceanic slab are inferred to have transported preexisting recycled Pacific oceanic crust from the MTZ into the overlying asthenosphere mantle. The upwelling Pacific oceanic crust reacted with asthenospheric mantle peridotite (i.e., DMM) to produce mantle pyroxenite, whose partial melting at shallow depths generated the CBs. Considering the low δ98/95Mo values of both the CBs and coeval potassic basalts from NE China, we speculate that there may be a low δ98/95Mo reservoir in the MTZ beneath NE China.

Funder

National Natural Science Foundation of China-Guangdong Joint Fund

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3