Melt Network Reorientation and Crystallographic Preferred Orientation Development in Sheared Partially Molten Rocks

Author:

Seltzer Cassandra1ORCID,Peč Matěj1ORCID,Zimmerman Mark E.2ORCID,Kohlstedt David L.2ORCID

Affiliation:

1. Department of Earth, Atmospheric and Planetary Sciences Massachusetts Institute of Technology Cambridge MA USA

2. Department of Earth and Environmental Sciences University of Minnesota Minneapolis MN USA

Abstract

AbstractWe investigated the co‐evolution of melt, shape, and crystallographic preferred orientations (MPOs, SPOs, and CPOs) in experimentally deformed partially molten rocks, from which we calculated the influence of MPO and CPO on seismic anisotropy. Olivine‐basalt aggregates containing 2 to 4 wt% melt were deformed in general shear at a temperature of 1,250°C under a confining pressure of 300 MPa at shear stresses of τ ≤ 175 MPa to shear strains of γ ≤ 2.3. Grain‐scale melt pockets developed a MPO parallel to the loading direction by γ < 0.4. At higher strains, the grain‐scale MPO remained parallel to the loading direction, while incipient sample‐scale melt bands formed at ∼20° to the grain‐scale MPO. An initial SPO and CPO were induced during sample preparation, with [100] and [001] axes girdled perpendicular to the long axis of the starting material. At the highest explored strain, a strong SPO was established subperpendicular to the loading direction, and the [100] axes of the CPO clustered nearly parallel to the shear plane. Our results demonstrate that grain‐scale and sample‐scale alignments of melt pockets are distinct. Furthermore, the melt and the solid microstructures evolve on different timescales: in planetary bodies, changes in the stress field will drive a relatively fast reorientation of the melt network and a relatively slow realignment of the crystallographic axes. Rapid changes to seismic anisotropy in a deforming partially molten aggregate are thus caused by MPO rather than CPO.

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3