Novel Geometric Parameters for Assessing Flow Over Realistic Versus Idealized Urban Arrays

Author:

Lu Jiachen12ORCID,Nazarian Negin12ORCID,Hart Melissa Anne23ORCID,Krayenhoff E. Scott4,Martilli Alberto5ORCID

Affiliation:

1. Climate‐Resilient Cities Lab School of Built Environment UNSW Sydney Sydney NSW Australia

2. ARC Centre of Excellence for Climate Extremes UNSW Sydney Sydney NSW Australia

3. Climate Change Research Centre UNSW Sydney Sydney NSW Australia

4. School of Environmental Sciences University of Guelph Guelph ON Canada

5. Atmospheric Pollution Division Environmental Department CIEMAT Madrid Spain

Abstract

AbstractUrban heterogeneity, such as the variation of street layouts, building shapes, and building heights, cannot be fully represented by density parameters commonly used in idealized urban environmental analyses. To address this shortcoming and better model flow fields over complex urban neighborhoods, we propose two novel descriptive geometric parameters, alignedness and building facet entropy, which quantify the connectivity of inter‐building spaces along the prevailing wind direction and the variation of building facet orientations, respectively. We then conducted large eddy simulations over 101 urban layouts, including realistic urban configurations with uniform building height as well as idealized building arrays with variable heights, and evaluated the resulting bulk flow properties. Urban canopy flow over realistic neighborhoods resembles staggered building arrays for low urban densities but becomes similar to aligned configurations beyond λp ∼ 0.25 where the realistic flow is less sensitive to changes in density. We further show that compared to traditional density parameters (such as plan and frontal area densities), the mean alignedness, a measure of connectivity of flow paths in street canyons, better predicts canopy‐averaged flow properties. Furthermore, for realistic urban flow, the dispersive momentum flux shows a clear increasing trend with building density, and a decreasing trend with alignedness, which is in contrast with idealized cases that exhibit no clear trend. This distinct behavior further highlights the necessity of evaluating flow over realistic urban layouts for flow parameterization. This study provides an improved method of describing urban layouts for flow characterization that can be applied in neighborhood‐scale urban canopy parameterization.

Funder

National Computational Infrastructure

Australian Government

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3