Efficient Optimization of a Regional Water Elevation Model With an Automatically Generated Adjoint

Author:

Kärnä Tuomas12ORCID,Wallwork Joseph G.3ORCID,Kramer Stephan C.3ORCID

Affiliation:

1. Finnish Meteorological Institute Helsinki Finland

2. Now at Intel Corporation Helsinki Finland

3. Imperial College London UK

Abstract

AbstractCalibration of unknown model parameters is a common task in many ocean model applications. We present an adjoint‐based optimization of an unstructured mesh shallow water model for the Baltic Sea. Spatially varying bottom friction parameter is tuned to minimize the misfit with respect to tide gauge sea surface height (SSH) observations. A key benefit of adjoint‐based optimization is that computational cost does not depend on the number of unknown variables. Adjoint models are, however, typically very laborious to implement. In this work, we leverage a domain specific language framework in which the discrete adjoint model can be obtained automatically. The adjoint model is both exactly compatible with the discrete forward model and computationally efficient. A gradient‐based quasi‐Newton method is used to minimize the misfit. Optimizing spatially‐variable parameters is typically an under‐determined problem and can lead to over‐fitting. We employ Hessian‐based regularization to penalize the spatial curvature of the friction field to overcome this problem. The SSH dynamics in the Baltic Sea are simulated for a 3‐month period. Optimization of the bottom friction parameter results in significant improvement of the model performance. The results are especially encouraging in the complex Danish Straits region, highlighting the benefit of unstructured meshes. Domain specific language frameworks enable automated model analysis and provide easy access to adjoint modeling. Our application shows that this capability can be enabled with few efforts, and the optimization procedure is robust and computationally efficient.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3