Data Assimilation Networks

Author:

Boudier Pierre1,Fillion Anthony2,Gratton Serge2,Gürol Selime3,Zhang Sixin2ORCID

Affiliation:

1. NVIDIA ANITI Toulouse France

2. Université de Toulouse ANITI Toulouse France

3. CERFACS NITI Toulouse France

Abstract

AbstractData Assimilation aims at estimating the posterior conditional probability density functions based on error statistics of the noisy observations and the dynamical system. State of the art methods are sub‐optimal due to the common use of Gaussian error statistics and the linearization of the non‐linear dynamics. To achieve a good performance, these methods often require case‐by‐case fine‐tuning by using explicit regularization techniques such as inflation and localization. In this paper, we propose a fully data driven deep learning framework generalizing recurrent Elman networks and data assimilation algorithms. Our approach approximates a sequence of prior and posterior densities conditioned on noisy observations using a log‐likelihood cost function. By construction our approach can then be used for general nonlinear dynamics and non‐Gaussian densities. As a first step, we evaluate the performance of the proposed approach by using fully and partially observed Lorenz‐95 system in which the outputs of the recurrent network are fitted to Gaussian densities. We numerically show that our approach, without using any explicit regularization technique, achieves comparable performance to the state‐of‐the‐art methods, IEnKF‐Q and LETKF, across various ensemble size.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

Reference51 articles.

1. Data Assimilation

2. Bachlechner T. Majumder B. P. Mao H. H. Cottrell G. W. &McAuley J.(2020).ReZero is all you need: Fast convergence at large depth. arXiv preprint arXiv:2003.04887.

3. Michael Barr and Charles Wells. Toposes, triples and theories. Grundlehren der mathematischen Wissenschaften, no. 278. Springer-Verlag, New York etc. 1985, xiii + 345 pp.

4. Bing X. Naiyan W. Tianqi C. &Mu L.(2015).Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3