Projecting Changes in the Drivers of Compound Flooding in Europe Using CMIP6 Models

Author:

Hermans Tim H. J.1ORCID,Busecke Julius J. M.2ORCID,Wahl Thomas3ORCID,Malagón‐Santos Víctor4,Tadesse Michael G.5,Jane Robert A.3ORCID,van de Wal Roderik S. W.16ORCID

Affiliation:

1. Institute for Marine and Atmospheric Research Utrecht Utrecht University Utrecht The Netherlands

2. Lamont‐Doherty Earth Observatory Columbia University Palisades NY USA

3. Civil, Environmental, and Construction Engineering National Center for Integrated Coastal Research University of Central Florida Orlando FL USA

4. Department of Estuarine & Delta Systems NIOZ Royal Netherlands Institute for Sea Research Yerseke The Netherlands

5. Hazen and Sawyer Orlando FL USA

6. Department of Physical Geography Utrecht University Utrecht The Netherlands

Abstract

AbstractWhen different flooding drivers co‐occur, they can cause compound floods. Despite the potential impact of compound flooding, few studies have projected how the joint probability of flooding drivers may change. Furthermore, existing projections may not be very robust, as they are based on only 5 to 6 climate model simulations. Here, we use a large ensemble of simulations from the Coupled Model Intercomparison Project 6 (CMIP6) to project changes in the joint probability of extreme storm surges and precipitation at European tide gauges under a medium and high emissions scenario, enabled by data‐proximate cloud computing and statistical storm surge modeling. We find that the joint probability will increase in the northwest and decrease in most of the southwest of Europe. Averaged over Europe, the absolute magnitude of these changes is 36%–49% by 2080, depending on the scenario. The large‐scale changes in the joint probability of extreme storm surges and precipitation are similar to those in the joint probability of extreme wind speeds and precipitation, but locally, differences can exceed the changes themselves. Due to internal climate variability and inter‐model differences, projections based on simulations of only 5 to 6 randomly chosen CMIP6 models have a probability of higher than 10% to differ qualitatively from projections based on all CMIP6 simulations in multiple regions, especially under the medium emissions scenario and earlier in the twenty‐first century. Therefore, our results provide a more robust and less uncertain representation of changes in the potential for compound flooding in Europe than previous projections.

Funder

Gordon and Betty Moore Foundation

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3