Impact of Soil Moisture Dynamics and Precipitation Pattern on UK Urban Pluvial Flood Hazards Under Climate Change

Author:

Rong Youtong1ORCID,Bates Paul12ORCID,Neal Jeffrey12ORCID,Archer Leanne1ORCID,Hatchard Simbi12,Kendon Elizabeth13

Affiliation:

1. School of Geographical Sciences University of Bristol Bristol UK

2. Fathom Bristol UK

3. Met Office Hadley Centre Exeter UK

Abstract

AbstractThe diversity of flood‐generating mechanisms superimposed on catchment physiographic features with non‐stationary meteorological drivers makes future flood hazard assessment a grand challenge. To date, many studies have examined patterns in rainfall and streamflow, but far fewer have investigated trends in the other drivers of flooding. The complex transfer function between precipitation and flooding makes it potentially misleading to simply look at the change in rainfall to express the hazard. Furthermore, there are very few studies that have directly used output from km‐scale climate models in flood modeling. Coarse resolution climate data sets may not credibly resolve local climate and weather extremes. Changes in rainfall distribution and antecedent moisture over extended time periods due to climate change have so far been ignored when assessing urban pluvial flood risk. In this paper, an urban flood hazard assessment framework using the latest 2.2 km resolution UK Climate Projections Local is proposed. Global warming induced changes in pluvial flood risks under RCP8.5 are projected, focusing on the impact of changing precipitation patterns and soil moisture dynamics on flood generation. Results indicate a strong increase in the frequency of occurrence of extreme floods, and the resultant future (2060–2080) annual flood volume is expected to increase up to 52.6% relative to 1980–2000 over a major UK urban region, and these patterns are likely to hold more generally elsewhere in the UK. Shifts to a later occurrence of extreme flooding is identified under global warming. Previous studies that have neglected soil moisture dynamics are unlikely to give accurate flood estimates.

Funder

China Scholarship Council

Natural Environment Research Council

Publisher

American Geophysical Union (AGU)

Reference79 articles.

1. Application of a conceptual hydrologic model in teaching hydrologic processes;Aghakouchak A.;International Journal of Engineering Education,2010

2. Modeling cosmic ray neutron field measurements

3. A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3