Conflicting Changes of Vegetation Greenness Interannual Variability on Half of the Global Vegetated Surface

Author:

Tian Jiaqi1ORCID,Luo Xiangzhong12

Affiliation:

1. Department of Geography National University of Singapore Singapore Singapore

2. Center for Nature‐based Climate Solutions Department of Biological Sciences National University of Singapore Singapore Singapore

Abstract

AbstractChanges in the interannual variability (IAV) of vegetation greenness and carbon sequestration are key indicators of the stability and climate sensitivities of terrestrial ecosystems. Recent studies have examined the changes in the vegetation IAV using atmospheric CO2 observations and dynamic global vegetation models (DGVMs), however, reported different and even contradictory IAV trends. Here, we investigate the changes in the IAV of vegetation greenness, quantified as coefficient of variability (CV), over the past few decades based on multiple satellite remote sensing products and DGVMs. Our results suggested that, on half of the global vegetated surface (mostly in the tropics), the CV trends detected by different satellite remote sensing products are conflicting. We found that 22.20% and 28.20% of the global vegetated surface (mostly in the non‐tropical land surface) show significant positive and negative CV trends (p ≤ 0.1), respectively. Regions with higher air temperature and greater aridity tend to have increasing CV trends, whereas greater vegetation greening trend and higher nitrogen deposition lead to smaller CV trends. DGVMs generally cannot capture the CV trends obtained from satellite remote sensing products, while the inconsistency among satellite remote sensing products is likely caused by their process algorithms rather than the sensors utilized. Our study closely examines the changes in the IAV of global vegetation greenness, and highlights substantial uncertainty when using satellite remote sensing to study the response of terrestrial ecosystems to climate change.

Funder

Singapore Energy Centre

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3