A Novel Emergent Constraint Approach for Refining Regional Climate Model Projections of Peak Flow Timing

Author:

Bass B.1ORCID,Thackeray C. W.1ORCID,Hall A.1,Rahimi S.12ORCID,Huang L.1

Affiliation:

1. Department of Atmospheric and Oceanic Sciences University of California Los Angeles CA USA

2. Department of Atmospheric Science University of Wyoming Laramie WY USA

Abstract

AbstractGlobal climate models (GCMs) are unable to produce detailed runoff conditions at the basin scale. Assumptions are commonly made that dynamical downscaling can resolve this issue. However, given the large magnitude of the biases in downscaled GCMs, it is unclear whether such projections are credible. Here, we use an ensemble of dynamically downscaled GCMs to evaluate this question in the Sierra‐Cascade mountain range of the western US. Future projections across this region are characterized by earlier seasonal shifts in peak flow, but with substantial inter‐model uncertainty (−25 ± 34.75 days, 95% confidence interval (CI)). We apply the emergent constraint (EC) method for the first time to dynamically downscaled projections, leading to a 39% (−28.25 ± 20.75 days, 95% CI) uncertainty reduction in future peak flow timing. While the constrained results can differ from bias corrected projections, the EC is based on GCM biases in historical peak flow timing and has a strong physical underpinning.

Funder

National Science Foundation

California Energy Commission

U.S. Department of Energy

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3