Affiliation:
1. Department of Climate and Space Sciences and Engineering University of Michigan Ann Arbor MI USA
2. Laboratoire de Physique des Plasmas (LPP) École Polytechnique CNRS Sorbonne Université Institut Polytechnique deParis Palaiseau France
3. NASA Goddard Space Flight Center Greenbelt MD USA
4. Department of Physics and Astronomy Rice University Houston Tx USA
Abstract
AbstractThis paper aims to quantify the magnetospheric magnetic flux contents under moderate to intense space weather conditions using global simulations. This study is a companion to Akhavan‐Tafti, Atilaw, et al. (2023, https://doi.org/10.1029/2023JA031832) where magnetic flux evolution is presented for a catalog of storm events, using Heliophysics System Observatory (HSO) observations. For this study, we used the Space Weather Modeling Framework (SWMF) in Geospace configuration to study magnetic flux dynamics for a subset of their storm events (15 events). Simulations reliably resolve the storm‐time magnetic flux Bz and current density |J| asymmetries across the different storm phases. It is revealed that: relative to the quiet period, flux content is enhanced during the storm sudden commencement (SSC) phase in the dayside by ΔBz/Bz, quiet = +17%, and reduced in the nightside magnetosphere (r[RE] < −6 RE) by −15%. At the same time, the cross‐tail current is found to enhance (|J| = 2 nA/m2), which suggests the storm impact in the nightside magnetosphere is much earlier in the storm cycle than previously shown. Concurring with previous studies, a significant depletion of magnetic flux by up to −40%, with day‐night and dawn‐dusk asymmetries, can be seen during the main and recovery phases. This corresponds to the enhanced current density (|J| = 5–8 nA/m2) at ∼6 RE further confirming the role of ring current in driving magnetospheric dynamics during the main and recovery phases. This is in contrast with the SSC phase wherein the Chapman‐Ferraro and cross‐tail currents are the dominant current systems.
Funder
University of Michigan
National Aeronautics and Space Administration
Publisher
American Geophysical Union (AGU)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献