Amplitude‐Dependent Properties and Excitation Mechanisms of EMIC Waves in the Earth's Inner Magnetosphere

Author:

Yan Yun1ORCID,Yue Chao1ORCID,Yin Ze‐Fan1ORCID,Zhou Xu‐Zhi1,Zong Qiu‐Gang1ORCID,Li Jing‐Huan1ORCID

Affiliation:

1. Institute of Space Physics and Applied Technology Peking University Beijing China

Abstract

AbstractLarge‐amplitude (Bw > 1 nT) electromagnetic ion cyclotron (EMIC) waves can cause the rapid loss of >1 MeV electrons, greatly impacting radiation belt dynamics. With long‐term Van Allen Probe B observations from 2013 to 2018, we conducted a statistical survey to reveal the amplitude‐dependent EMIC wave properties and excitation mechanisms in the Earth's inner magnetosphere. Statistical results show that large‐amplitude EMIC waves prefer to occur in the afternoon‐dusk sector in the northern hemisphere and tend to be more left‐hand polarized with smaller wave normal angles. In addition, the high proton beta parallel conditions also favor the generation of larger‐amplitude EMIC waves. From the variations of EMIC wave occurrence rate as a function of SuperMAG electrojet (SME) index and solar wind dynamic pressure, we find that the small‐amplitude EMIC waves are generally triggered by high solar wind dynamic pressure, while large‐amplitude EMIC wave generation is both affected by substorm activity and solar wind dynamic pressure. The normalized magnetic field perturbations during EMIC wave appearance, which enable us to distinguish the relative roles of magnetospheric compression and substorm injection in the excitation of different‐amplitude EMIC waves, provide further evidence that as wave amplitude increases, substorm injection plays a more important role in EMIC wave excitation, and magnetospheric compression is also an indispensable trigger.

Funder

National Natural Science Foundation of China

China National Space Administration

National Key Research and Development Program of China

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3