Global Warming Potentials of CO2 Uptake, CH4 Emissions, and Albedo Changes in a Restored Mangrove Ecosystem

Author:

Xu Zhe1,Li Xianglan1ORCID,Tian Pengpeng1,Huang Yuting1,Zhu Qingsong1,Zou Huimin1ORCID,Huang Ying2ORCID,Zhang Zhao3,Zhang Shumin3,Chen Mengna3,Chen Yahui3

Affiliation:

1. State Key Laboratory of Remote Sensing Science College of Global Change and Earth System Science Faculty of Geographical Science Beijing Normal University Beijing China

2. State Key Laboratory of Estuarine and Coastal Research Center for Blue Carbon Science and Technology East China Normal University Shanghai China

3. Wenzhou Marine Center Ministry of Natural Resources Wenzhou China

Abstract

AbstractRestoration of mangrove forests has garnered increasing global prominence as a nature‐based solution for carbon (C) sequestration. However, it was unclear whether the radiation forcing induced by methane (CH4) emissions and albedo changes during mangrove restoration processes can offset the cooling effect resulting from the net carbon dioxide (CO2) uptake. In this study, we measured the CO2, CH4, and albedo during 2020–2022 using an open‐path eddy covariance system in an 8‐year restored mangrove ecosystem afforested in Zhejiang Province, China. Their integrated global warming potentials (GWPs) were calculated to assess the climatic impact of mangrove restoration. The results showed that the restored mangroves functioned as a CO2 sink and a CH4 source, with annual values of −656.75 to −465.41 and 5.54 to 9.07 g C m−2 yr−1, respectively. The albedo varied slightly with a range of 0.11–0.13. The integrated GWPs of CO2, CH4, and albedo were −1,354.00 and −1,875.70 g CO2‐eq m−2 yr−1 over the 20‐ and 100‐year time horizons, respectively. The negative values indicated that the mangrove restoration had a net cooling effect, mainly due to CO2 uptake. The warming effects caused by CH4 emissions and albedo changes had the potential to partially offset CO2 uptake by 12.55%–36.51% and 0.08%–0.42%, respectively. Random forest analysis showed that photosynthetically active radiation (PAR) was the dominant driver on integrated GWPs with feature importance values of 0.34. Our results revealed that the cooling benefit of 8‐year restored mangroves remained significant, even when it was partially offset by CH4 emissions and albedo changes.

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3