Causal Drivers of Land‐Atmosphere Carbon Fluxes From Machine Learning Models and Data

Author:

Farahani Mozhgan A.1ORCID,Goodwell Allison E.12ORCID

Affiliation:

1. Department of Civil Engineering University of Colorado Denver Denver CO USA

2. Prairie Research Institute University of Illinois at Urbana‐Champaign Champaign IL USA

Abstract

AbstractInteractions among atmospheric, root‐soil, and vegetation processes drive carbon dioxide fluxes (Fc) from land to atmosphere. Eddy covariance measurements are commonly used to measure Fc at sub‐daily timescales and validate process‐based and data‐driven models. However, these validations do not reveal process interactions, thresholds, and key differences in how models replicate them. We use information theory‐based measures to explore multivariate information flow pathways from forcing data to observed and modeled hourly Fc, using flux tower data sets in the Midwestern U.S. in intensively managed corn‐soybean landscapes. We compare multiple linear regressions, long‐short term memory, and random forests (RF), and evaluate how different model structures use information from combinations of sources to predict Fc. We extend a framework for model predictive and functional performance, which examines a suite of dependencies from all forcing variables to the observed or modeled target. Of the three model types, RF exhibited the highest functional and predictive performance, correctly capturing strong dependencies between radiation and temperature variables with Fc. Regionally trained models demonstrate lower predictive but higher functional performance compared to site‐specific models, suggesting superior reproduction of observed relationships at the expense of predictive accuracy. This study shows that some metrics of predictive performance encapsulate functional behaviors better than others, highlighting the need for multiple metrics of both types. This study improves our understanding of carbon fluxes in an intensively managed landscape, and more generally provides insight into how model structures and forcing variables translate to interactions that are well versus poorly captured in models.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3