A Practical Algorithm for Correcting Topographical Effects on Global GPP Products

Author:

Xie Xinyao1ORCID,Chen Jing M.23ORCID,Yuan Wenping4ORCID,Guan Xiaobin5,Jin Huaan1,Leng Jiye2

Affiliation:

1. Institute of Mountain Hazards and Environment Chinese Academy of Sciences Chengdu China

2. Department of Geography and Planning University of Toronto Toronto ON Canada

3. School of Geographical Sciences Fujian Normal University Fuzhou China

4. School of Atmospheric Sciences Sun Yat‐sen University Guangdong China

5. School of Resource and Environmental Sciences Wuhan University Wuhan China

Abstract

AbstractVegetation in mountainous areas contributes about 36% to the global gross primary productivity (GPP). However, the influences of topography on radiation and water redistributions in mountain ecosystems are so far ignored in existing global GPP data sets. Here, an eco‐hydrological model was adopted to simulate 30 m resolution mountain and flat GPP over 16 watersheds. Then, a topographical correction index (TCI) was developed based on simulated soil water redistribution (TCIwater), radiation redistribution (TCIrad), and redistribution of climate factors (TCIclim). Finally, the proposed TCI was applied to four GPP data sets. The mean‐bias‐error (MBE), determination coefficient (R2), and Root‐Mean‐Square‐Error (RMSE) between mountain GPP and flat GPP (or GPP data sets) were used for evaluation. Results showed that the MBE of flat GPP before correction (194 g C m−2 yr−1) was reduced to 126, 94, and 2 g C m−2 yr−1 after the corrections of TCIwater, TCIrad, and TCIclim, highlighting the effectiveness of integrated redistribution information in correcting the topographical effect on GPP estimation. The relationship between mountain and flat GPP after the TCI correction was improved at the 30 m resolution (increasing R2 by 0.09 and reducing RMSE by 90 g C m−2 yr−1) and 480 m resolution (increasing R2 by 0.13 and reducing RMSE by 178 g C m−2 yr−1). Regarding the four GPP data sets after the TCI correction, the MBE of 183 g C m−2 yr−1 was averagely reduced to 17 g C m−2 yr−1, and RMSE was reduced by 118 g C m−2 yr−1 at 480 m resolution. This study suggests that integrating topography‐induced interactions into current GPP data sets is a feasible way to understand the carbon budget in mountain ecosystems.

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Soil Science,Water Science and Technology,Ecology,Aquatic Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3